Discrete Mathematics

5. Graphs & Trees

What are Graphs?

- General meaning in everyday math: *A plot or chart of numerical data using a coordinate system.*
- Technical meaning in discrete mathematics: *A particular class of discrete structures (to be defined) that is useful for representing relations and has a convenient webby-looking graphical representation.*

Simple Graphs

Visual Representation of a Simple Graph

- The graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices
- Correspond to symmetric binary relations *R*.

Simple Graphs

Visual Representation of a Simple Graph

- Definition:
 A simple graph G=(V,E)
 consists of:
 - a set V of *vertices* or *nodes* (V corresponds to the universe of the relation R), and
 - a set *E* of *edges* / *arcs* / *links*: unordered pairs of [distinct?] elements $u,v \in V$, such that uRv.

Example of a Simple Graph

- Let V be the set of states in the far-southeastern U.S.:
 V={FL, GA, AL, MS, LA, SC, TN, NC}
- Let $E = \{\{u, v\} \mid u \text{ adjoins } v\}$
 - ={{FL,GA},{FL,AL},{FL,MS}, {FL,LA},{GA,AL},{AL,MS}, {MS,LA},{GA,SC},{GA,TN}, {SC,NC},{NC,TN},{MS,TN}, {MS,AL}}

Multigraphs

- Like simple graphs, but there may be *more than one* edge connecting two given nodes.
- Definition:

A multigraph G=(V, E, f) consists of a set V of vertices, a set E of edges (as primitive objects), and a function $f:E \rightarrow \{\{u,v\} \mid u,v \in V \land u \neq v\}$.

edges

• Example:

nodes are cities and

edges are segments of major highways.

Pseudographs

- Like a multigraph, but edges connecting a node to itself are allowed.
- *Definition*:
 - A pseudograph G=(V, E, f) where $f:E \rightarrow \{\{u,v\} \mid u,v \in V\}$. Edge $e \in E$ is a loop if loop $f(e)=\{u,u\}=\{u\}$.
- Example:

nodes are campsites in a state park and edges are hiking trails through the woods.

Directed Graphs

- Correspond to arbitrary binary relations *R*, which need not be symmetric.
- *Definition*:
 - A *directed graph* (*V*, *E*) consists of a set of vertices *V* and a binary relation *E* on *V*.
- Example:

 $V = \text{people}, E = \{(x,y) \mid x \text{ loves } y\}$

Walk, loop, sling, and path

- Definition:
 - A *walk* is a sequence $x_0, x_1, ..., x_n$ of the vertices of a digraph such that $x_i x_{i+1}, 0 \le i \le n-1$, is an edge.
 - The *length of a walk* is the number of edges in the walk.
 - If a walk holds $x_i \neq x_j$ ($i \neq j$) i, j=0, ..., n, except x_0, x_n (i.e $x_0 = x_n$), the walk is called a *cycle*.
 - A *loop* is a cycle of length one.
 - A *sling* is a cycle of length two.
 - A walk is a *path* if no edge is repeated more than once.

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- *Definition*:

A *directed multigraph* G=(V, E, f) consists of a set V of vertices, a set E of edges, and a function $f:E \rightarrow V \times V$.

- *Example*:
 - *The WWW is a directed multigraph.*
 - *V*=web pages, *E*=hyperlinks.

Types of Graphs: Summary

• Keep in mind this terminology is not fully standardized...

	Edge	M ultiple	Self-
Term	type	edges ok?	loops ok?
Simple graph	Undir.	No	No
Multigraph	Undir.	Yes	No
Pseudograph	Undir.	Yes	Yes
Directed graph	Directed	No	Yes
Directed multigraph	Directed	Yes	Yes

Graph Terminology

• Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, and union.

Adjacency

Let *G* be an undirected graph with edge set *E*. Let $e \in E$ be (or map to) the pair $\{u,v\}$. Then we say:

- *u*, *v* are *adjacent* / *neighbors* / *connected*.
- Edge *e* is *incident with* vertices *u* and *v*.
- Edge *e connects u* and *v*.
- Vertices *u* and *v* are *endpoints* of edge *e*.

Degree of a Vertex

- Let *G* be an undirected graph, $v \in V$ a vertex.
- The *degree* of *v*, deg(*v*), is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is *isolated*.
- A vertex of degree 1 is *pendant*.

Handshaking Theorem

- *Theorem*:
 - Let *G* be an undirected (simple, multi-, or pseudo-) graph with vertex set *V* and edge set *E*. Then $\sum_{v \in V} \deg(v) = 2|E|$
- Corollary:
 - Any undirected graph has an even number of vertices of odd degree.

Directed Adjacency

- Let *G* be a directed (possibly multi-) graph, and let *e* be an edge of *G* that is (or maps to) (*u*,*v*). Then we say:
 - *u* is adjacent to *v*, *v* is adjacent from *u*
 - *e comes from* u, e *goes to* v.
 - e connects u to v, e goes from u to v
 - the *initial vertex* of *e* is *u*
 - the *terminal vertex* of *e* is *v*

Directed Degree

• *Definition*:

Let *G* be a directed graph, *v* a vertex of *G*.

- The *in-degree* of *v*, deg⁻(*v*), is the number of edges going to *v*.
- The *out-degree* of *v*, deg⁺(*v*), is the number of edges coming from *v*.
- The *degree* of *v*, deg(*v*)≡deg⁻(*v*)+deg⁺(*v*), is the sum of *v*'s in-degree and out-degree.

Directed Handshaking Theorem

- *Theorem*:
 - Let *G* be a directed (possibly multi-) graph with vertex set *V* and edge set *E*. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete Graphs *K_n*
- Cycles C_n
- Wheels W_n
- n-Cubes Q_n
- Bipartite Graphs
- Complete Bipartite Graphs *K*_{*m*,*n*}

Complete Graphs

- *Definition*:
 - For any $n \in \mathbb{N}$, a *complete graph* on *n* vertices, K_n , is a simple graph with *n* nodes in which every node is adjacent to every other node: $\forall u, v \in V$: $u \neq v \leftrightarrow \{u, v\} \in E$.

Note that K_n has $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$ edges.

Wheels

- *Definition*:
 - For any *n*≥3, a *wheel* W_n, is a simple graph obtained by taking the cycle C_n and adding one extra vertex v_{hub} and *n* extra edges {{v_{hub}, v₁}, {v_{hub}, v₂},...,{v_{hub}, v_n}}.

How many edges are there in W_n ?

n-Cubes (hypercubes)

- *Definition*:
 - A graph that has vertices representing the 2ⁿ bit strings of length n
 - For any $n \in \mathbf{N}$, the *hypercube* Q_n is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes. Q_0 has 1 node.

Number of vertices: 2^{*n*}*. Number of edges:Exercise to try!*

n-Cubes (hypercubes)

• *Definition*:

For any $n \in \mathbf{N}$, the hypercube Q_n can be defined recursively as follows:

- $Q_0 = (\{v_0\}, \emptyset)$ (one node and no edges)
- For any $n \in \mathbb{N}$, if $Q_n = (V, E)$, where $V = \{v_1, ..., v_a\}$ and $E = \{e_1, ..., e_b\}$, then $Q_{n+1} = (V \cup \{v_1, ..., v_a\}, E \cup \{e_1, ..., e_b\} \cup \{\{v_1, v_1\}, \{v_2, v_2\}, ..., \{v_a, v_a'\}\})$ where $v_1, ..., v_a'$ are new vertices, and where if $e_i = \{v_j, v_k\}$ then $e_i' = \{v_j', v_k'\}$.

Bipartite Graphs

- *Definition*:
 - A simple graph *G* is called *bipartite* if its vertex set *V* can be partitioned into two disjoint sets *V*₁ and *V*₂ such that every edge in the graph connects a vertex in *V*₁ and a vertex in *V*₂ (so that no edge in *G* connects either two vertices in *V*₁ or two vertices in *V*₂)

Complete Bipartite Graphs

- *Definition*:
 - Let *m*, *n* be positive integers. The *complete bipartite graph* $K_{m,n}$ is the graph whose vertices can be partitioned $V = V_1 \cup V_2$ such that

1.
$$|V_1| = m$$

- $2. |V_2| = n$
- 3. For all $x \in V_1$ and for all $y \in V_2$, there is an edge between x and y
- 4. No edge has both its endpoints in V_1 or both its endpoints in V_2

Graph Unions

- *Definition*:
 - The *union* $G_1 \cup G_2$ of two simple graphs $G_1 = (V_1, V_2)$
 - E_1) and $G_2=(V_2,E_2)$ is the simple graph $(V_1\cup V_2, E_1\cup E_2)$.

Graph Representations & Isomorphism

- Graph representations:
 - Adjacency lists.
 - Adjacency matrices.
 - Incidence matrices.
- Graph isomorphism:
 - Two graphs are isomorphic iff they are identical except for their node names.

Adjacency Lists

- A table with 1 row per vertex, listing its adjacent vertices.
- A way to represent a graph w/ no multiple edges

Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each edge incident from that node.

Adjacency Matrices

- Matrix $\mathbf{M} = [m_{ij}]$, where
 - $m_{ij} = 1$ when edge e_j is incident with v_{i_j}
 - $m_{ij} = 0$ otherwise.
- A way of represent graphs
 - can be used to represent multiple edges and loops

Graph Isomorphism

• *Definition*:

Simple graphs $G_1=(V_1, E_1)$ and $G_2=(V_2, E_2)$ are *isomorphic* iff \exists a bijection $f:V_1 \rightarrow V_2$ such that $\forall a, b \in V_1$, a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 .

- *f* is the "renaming" function that makes the two graphs identical.
- Definition can easily be extended to other types of graphs.

Graph Invariants under Isomorphism

- Graph Invariant
 - a property preserved by isomorphism of graphs
 - Necessary but not sufficient conditions for $G_1 = (V_1, V_2)$
 - E_1) to be isomorphic to $G_2=(V_2, E_2)$:
 - $|V_1| = |V_2|, |E_1| = |E_2|.$
 - The number of vertices with degree *n* is the same in both graphs.
 - For every proper subgraph *g* of one graph, there is a proper subgraph of the other graph that is isomorphic to *g*.

Isomorphism Example

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

Are These Isomorphic?

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

* Same # of vertices

* Same # of edges

* Different # of verts of degree 2! (1 vs 3)

Connectedness

• *Definition*:

A path of length *n* from *u* to *v* in G is a sequence of n edges $e_1, e_2, ..., e_n$ such that e_1 is associated with $\{x_0, x_1\}, e_2$ is associated with $\{x_1, x_2\}$, and so on, with e_n associated with $\{x_{n-1}, x_n\}$, where $x_0=u$ and $x_n=v$;

- The path is *circuit* if it begins and ends at the same vertex, that is *u=v*, and has length greater than zero.
- A path or circuit is *simple* if it does not contain the same edge more than once.

Connectedness

- Definition:
 - An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- *Theorem*:
 - There is a *simple* path between any pair of vertices in a connected undirected graph.

Directed Connectedness

- *Definition*:
 - A directed graph is *strongly connected* iff there is a directed path from *a* to *b* for any two vertices *a* and *b*.
 - It is *weakly connected* iff the underlying *undirected* graph (*i.e.*, with edge directions removed) is connected.
- Note *strongly* implies *weakly* but not vice-versa.

Paths & Isomorphism

Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Euler & Hamilton Paths

- *Definition*:
 - An *Euler circuit* in a graph *G* is a simple circuit containing every <u>e</u>dge of *G*.
 - An *Euler path* in *G* is a simple path containing every edge of *G*.

Euler & Hamilton Paths (cont.)

- *Definition*:
 - A *Hamilton circuit* is a simple circuit that traverses each vertex in *G* exactly once.
 - A *Hamilton path* is a simple path that traverses each vertex in G exactly once.
- *Examples*:

Discrete Mathematics, Spring 2009

Trees

- *Definition*:
 - A **tree** is a connected undirected graph with no simple circuits.
- Since a tree cannot have a circuit, a tree cannot contain multiple edges or loops.
- Therefore, any tree must be a **simple graph**.
- Theorem:
 - An undirected graph is a tree if and only if there is a **unique simple path** between any two of its vertices.
- In general, we use trees to represent **hierarchical structures**.

Root & Rooted tree

- We often designate a particular vertex of a tree as the **root**. Since there is a unique path from the root to each vertex of the graph, we direct each edge away from the root.
- *Definition*:

A **rooted tree** is a tree in which one vertex has been designated as the root and every edge is directed away from the root

Tree Terminology

- *Definition*:
 - If v is a vertex in a rooted tree other than the root,
 the parent of v is the unique vertex u such that
 there is a directed edge from u to v.
 - When *u* is the parent of *v*, *v* is called the **child** of *u*.
 - Vertices with the same parent are called **siblings**.
 - The ancestors of a vertex other than the root are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root.

Tree Terminology (cont.)

- *Definition*:
 - The **descendants** of a vertex *v* are those vertices that have *v* as an ancestor.
 - A vertex of a tree is called a **leaf** if it has no children.
 - Vertices that have children are called internal vertices.
 - If *a* is a vertex in a tree, then the **subtree** with *a* as its root is the subgraph of the tree consisting of *a* and its descendants and all edges incident to these descendants.

Tree Terminology

- *Definition*:
 - The **level** of a vertex *v* in a rooted tree is the length of the unique path from the root to this vertex.
 - The level of the root is defined to be zero.
 - The **height** of a rooted tree is the maximum of the levels of vertices.

m-ary tree

- Definition:
 - A rooted tree is called an *m*-ary tree if every internal vertex has no more than m children.
 - The tree is called a **full** *m*-ary tree if every internal vertex has exactly m children.
 - An *m*-ary tree with *m* = 2 is called a **binary tree**.
- Theorem:
 - A tree with *n* vertices has (n 1) edges.
 - A full *m*-ary tree with *i* internal vertices contains $n = m \cdot i + 1$ vertices.

Ordered Rooted Tree

- *Definition*:
 - An **ordered rooted tree** is a rooted tree where the children of each internal vertex are ordered.
- For example, in an ordered binary tree (just called binary tree), if an internal vertex has two children,
 - the first child is called the left child and the second is called the right child.
 - the tree rooted at the left child is called the left subtree, and at the right child, the right subtree
- Ordered rooted trees can be defined recursively.

Tree Traversal

• Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal algorithms.

Preorder traversal

• *Definition*:

Let *T* be an ordered rooted tree with root *r*. If *T* consists only of *r*, then *r* is the *preorder traversal* of *T*. Otherwise, suppose that T_1 , T_2, \ldots, T_n are the subtrees at r from left to right in *T*. The preorder traversal begins by visiting *r*. It continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

Inorder traversal

• *Definition*:

Let *T* be an ordered rooted tree with root *r*. If *T* consists only of *r*, then *r* is the *inorder traversal* of *T*. Otherwise, suppose that T_1 , T_2, \ldots, T_n are the subtrees at rfrom left to right. The *inorder* traversal begins by traversing visiting T_1 in inorder, then visiting *r*. It continues by traversing T_2 in inorder, then T_3 in inorder, ..., and finally T_n in inorder

Postorder traversal

• *Definition*:

Let *T* be an ordered rooted tree with root *r*. If *T* consists only of *r*, then *r* is the *postorder traversal* of *T*. Otherwise, suppose that T_1 , T_2 , ..., T_n are the subtrees at *r* from left to right. The *postorder traversal* begins by traversing T_1 in postorder, then T_2 in postorder, ..., then T_n in postorder, and ends by visiting *r*.

- *Preorder* : a, b, e, j, k, n, o, p, f, c, d, g, l, m, h, I
- *Inorder* : j, e, n, k, o, p, b, f, a, c, l, g, m, d, h, i
- *Postorder* : j, n, o, p, k, e, f,
 b, c, l, m, g, h, i, d, a