
Discrete Mathematics
7. Boolean Algebra



Boolean algebra

• Definition:
− A Boolean lattice is a complemented and distributive lattice.

− A Boolean algebra is an algebra with signature <B, +, *, ', 0, 
1>, where + and * are binary operations and '  is a unary 
operation called complementation, and the following axioms 
hold.
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hold.

1. x*x=x and x+x=x (idempotent)

2. (x*y)*z=x* (y*z) and (x+y)+z=x+ (y+z) (associative)

3. x*y=y*x and x+y=y+x (commutative)

4. x* (x+y)=x and x+ (x*y)=x (absorption)

5. x* (y+z)= (x*y)+ (x*z) and x+ (y*z)= (x+y)* (x+z) 

(distributive)

6. Every element x has a (unique) complement x' such that 

x*x'=0 and x+x'=1 (complemented)



Huntington's postulates

• Huntington's postulates for Boolean algebra

− An algebra <B, *, +, ',0,1 >, where * and + are binary 

operations on the set B, is a Boolean algebra, if the 

followings are true.
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followings are true.

For every x, y, z∈ B,

1. x*y=y*x and x+y=y+x (commutative)

2. x*(y+z)=(x*y)+(x*z) and x+(y*z)=(x+y)*(x+z)

(distributive)

3. There exist 0 and 1 in B such that x+0=x and x*1=x

4. For every x, there exist x' in B such that x*x'=0 and x+x'=1 

(complemented).



Lemma 1:

1. 0 is a unique element.

2. 1 is a unique element.

Lemma 2:

For every x in B,

1. x*0=0.

2. x+1=1.

Lemma 3:

For every x in B,

Lemma 6:

For every x in B, (x')'=x.

Lemma 7:

For every x and y in B,

1. x*(x'*y)=0 

2. x+(x'+y)=1

Lemma 8:

For every x and y in B,

(x*y)'=x'+y'
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1. x*x=x.

2. x+x=x

Lemma 4:

For every x in B,

1. x*(x+y)=x

2. x+(x*y)=x

Lemma 5:

For every x in B, 

there is a unique x'  in B.

1. (x*y)'=x'+y'

2. (x+y)'=x'*y'

Lemma 9 (Associative law):

For every x, y and z in B,

1. (x*y)*z=x*(y*z)

2. (x+y)+z=x+(y+z)



Stone’s Representation Theorem

• Theorem:

− Let <B, *, +, ', 0, 1> be a Boolean algebra. Then <B, ≤> 

is a Boolean lattice, where x and y in B and x≤y iff x*y=x

and x+y=y
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and x+y=y

• Theorem (Stone’s Representation Theorem):

− For every Boolean algebra <B, *, +, ', 0, 1>, there exists 

a power set algebra <    (A), ∩,∪, ￣, ∅, A> which is 

isomorphic to <B, *, +, ', 0, 1>.

• Definition:

− Given a Boolean algebra <B, *, +, ' , 0, 1>, an atom is 

the element in B that covers 0.

℘



Proof of Stone’s representation theorem

Lemma 1:

For every x≠0 in B,∃a∈A, 

such that a≤x

Lemma 4: (homomorphism)

f(x*y)=f(x)∩ f(y)

∪

Define f : B→ (A), where A is a set of atoms, such that for any x in B,                              

f(x) = { a| (a∈A) and (a≤x) }. 

Claim : f is isomorphism from <B, *, +, ' , 0, 1 > to <      (A), ∩, ∪, ￣ , ∅, A >.

℘

℘
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∃

such that a≤x

Lemma 2:

For every x≠0 in B and a in A, 

one and only one of the following

holds.

1. a≤ x

2. a*x=0(a≤x')

Lemma 3: (homomorphism)

f(x*y)=f(x)∩ f(y)

f(x+y)=f(x)∪ f(y)

Lemma 5: (one-to-one)

x=y if f(x)=f(y)

Lemma 6: (onto)

For any {a1, a2,…, ak} ⊆A, 

∃ (a1+a2+…+ ak )∈B such that  

f(a1+a2+…+ ak)={a1, a2,…, ak}.f(x)f(x') =



Boolean expression

• Definition :

− A Boolean expression in n variables, x1, x2,…, xn, is a 

finite string of symbols formed by the following manner; 

0 and 1 are Boolean expressions.
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1. 0 and 1 are Boolean expressions.

2. x1, x2,…, xn are Boolean expressions.

3. If α and β are Boolean expressions, the (α*β), (α+β) are 

Boolean expressions.

4. If α is a Boolean expression, then α‘ is a Boolean expression.

5. No String of symbols except those formed by steps 1,2,3, and 

4 is a Boolean expression.



Equivalence

• Definition:

− Two Boolean expression α(x1, x2,…, xn) and β(x1, x2,…, xn) are 

equivalent if one can be obtained from the other by a finite 

number of applications of identities of a Boolean algebra.
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• Definition:

− Let  α(x1, x2,…, xn) be a Boolean expression in n variables and 

<B, *, +, ', 0,1> be any Boolean algebra whose elements are 

denoted by a1, a2,…, an. Let <a1, a2,…, an> be an n-tuple of Bn. 

Then the value of the Boolean expression α(x1, x2,…, xn) for the 

n-tuple <a1, a2,…, an> ∈ Bn is given by α(a1, a2,…, an) which is 

obtained by replacing x1 by a1, x2 by a2 ,…, and xn by an in the

α(x1, x2,…, xn).



Boolean function

• Definition:

− Let f:Bn→B be a function. If a Boolean expression g(x1, x2,…, 

xn) matches to a function f, then we say g is associated with

function f.
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function f.

• Definition:

− Let <B, *, +, ', 0, 1> be a Boolean algebra. A function 

f:Bn→B which is associated with a Boolean expression in n

variables is called a Boolean function. A Boolean function 

defined on a switching algebra is called a switching function.



Example
• Which of f1, f2, and f3 are Boolean functions ? (fi: B

2 � B, i=1,2,3)

1

α β

x1, x2 f1 f2 f3

0, 0 0 1 0

0, α α β β

0, β β α β

0, 1 1 0 α

α, 0 α β 0

α α β
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α β

0

<B, *, +, ', 0, 1> 

where B = { 0, 1, α, β }

f1 = x1'x2 + x1x2'

α, α 0 β 1

α, β 1 0 α

α, 1 β 0 0

β, 0 β β α

β, α 1 0 0

β, β 0 α β

β, 1 α β α

1, 0 1 0 β

1, α β α α

1, β α β β

1, 1 0 0 1



Exercise

1.   Let <B, ≤1> be a Boolean lattice where 
B={1,2,3,5,6,10,15,30} and ≤1 is defined to be “x
≤1 y if and only if x divides y”. 

By Stone Representation Theorem, there exists a By Stone Representation Theorem, there exists a 
power set Boolean lattice, < (A), ≤2>, which is 
isomorphic to <B, ≤1 >. 

Answer each of the following:

(a) Define set A.

(b) Show that f:B→ (A) is a homomorphism 
from <B, ≤1 > to < (A), ≤2 >.
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℘

℘
℘



Exercise (cont.)

2.   Let <B, +, *, ′, 0, 1> be a Boolean algebra. Show 
that the complement x′ of each element x in B
is unique (All identity properties used in your 
proof should be proven except those given by proof should be proven except those given by 
the definition of Boolean algebra).
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