Discrete Mathematics

7. Boolean Algebra

Boolean algebra

- *Definition*:
 - A *Boolean lattice* is a complemented and distributive lattice.
 - A *Boolean algebra* is an algebra with signature <*B*, +, *, ', 0, *I*>, where + and * are binary operations and ' is a unary operation called complementation, and the following axioms hold.
 - *1.* x*x=x and x+x=x (*idempotent*)
 - 2. $(x^*y)^*z = x^*(y^*z)$ and (x+y)+z = x+(y+z) (associative)
 - 3. $x^*y=y^*x$ and x+y=y+x (commutative)
 - 4. $x^*(x+y)=x$ and $x+(x^*y)=x$ (absorption)
 - 5. $x^*(y+z) = (x^*y) + (x^*z)$ and $x + (y^*z) = (x+y)^*(x+z)$ (*distributive*)
 - 6. Every element *x* has a (unique) complement *x'* such that $x^*x'=0$ and x+x'=1 (complemented)

Huntington's postulates

- Huntington's postulates for Boolean algebra
 - An algebra <*B*, *, +, ',0,1 >, where * and + are binary operations on the set *B*, is a *Boolean algebra*, if the followings are true.

For every $x, y, z \in B$,

- *1.* $x^*y=y^*x$ and x+y=y+x (*commutative*)
- 2. $x^{*}(y+z)=(x^{*}y)+(x^{*}z)$ and $x+(y^{*}z)=(x+y)^{*}(x+z)$ (*distributive*)
- 3. There exist 0 and 1 in B such that x+0=x and x*1=x
- For every *x*, there exist *x'* in *B* such that *x*x'=0* and *x+x'=1* (*complemented*).

Lemma 1. 0 is a unique element. 1. *1* is a unique element. 2. Lemma 2: For every x in B, x * 0 = 01 2 x+1=1Lemma 3: For every x in B, x * x = x1. 2 x + x = xLemma 4: For every x in B, 1. $x^{*}(x+y)=x$ 2. x + (x * y) = xLemma 5: For every *x* in *B*, there is a unique x' in B.

Lemma 6: For every x in B, (x')'=x. Lemma 7: For every x and y in B, 1. $x^{*}(x'^{*}y)=0$ 2. x+(x'+y)=1Lemma 8: For every x and y in B, 1. (x*y)'=x'+y'2. (x+y)'=x'*y'Lemma 9 (Associative law): For every *x*, *y* and *z* in *B*, 1. (x*y)*z=x*(y*z)2. (x+y)+z=x+(y+z)

Stone's Representation Theorem

- Theorem:
 - Let <B, *, +, ', 0, 1> be a Boolean algebra. Then <B, ≤> is a *Boolean lattice*, where *x* and *y* in *B* and *x*≤*y* iff *x***y*=*x* and *x*+*y*=*y*
- Theorem (Stone's Representation Theorem):
 - For every *Boolean algebra <B*, *, +, ', 0, 1>, there exists a power set algebra < (*Q*(*A*), ∩, ∪, ⁻, Ø, *A*> which is isomorphic to <*B*, *, +, ', 0, 1>.
- *Definition:*
 - Given a *Boolean algebra <B*, *, +, ', 0, 1>, an *atom* is the element in *B* that covers 0.

Proof of Stone's representation theorem

Define $f: B \to \{ \mathcal{Q}(A) \}$, where *A* is a set of atoms, such that for any *x* in *B*, $f(x) = \{ a \mid (a \in A) \text{ and } (a \le x) \}$. Claim : *f* is isomorphism from $\langle B, *, +, ', 0, 1 \rangle$ to $\langle \langle \mathcal{Q}(A), \cap, \cup, -, \emptyset, A \rangle$.

Lemma 1: For every $x \neq 0$ in $B, \exists a \in A$, such that $a \leq x$

Lemma 2:

For every $x \neq 0$ in *B* and *a* in *A*, one and only one of the following holds.

> 1. $a \le x$ 2. $a * x = 0 (a \le x')$

Lemma 3: (homomorphism) $f(x') = \overline{f(x)}$ Lemma 4: (homomorphism) $f(x*y)=f(x)\cap f(y)$ $f(x+y)=f(x)\cup f(y)$

Lemma 5: (one-to-one) x=y if f(x)=f(y)

Lemma 6: (onto) For any $\{a_1, a_2, ..., a_k\} \subseteq A$, $\exists (a_1+a_2+...+a_k) \in B \text{ such that}$ $f(a_1+a_2+...+a_k) = \{a_1, a_2, ..., a_k\}.$

Boolean expression

- *Definition* :
 - A *Boolean expression* in *n* variables, $x_1, x_2, ..., x_n$, is a finite string of symbols formed by the following manner;
 - 1. 0 and 1 are Boolean expressions.
 - 2. $x_1, x_2, ..., x_n$ are Boolean expressions.
 - If α and β are *Boolean expressions*, the (α*β), (α+β) are *Boolean expressions*.
 - 4. If α is a Boolean expression, then α is a Boolean expression.
 - 5. No String of symbols except those formed by steps 1,2,3, and 4 is a *Boolean expression*.

Equivalence

- *Definition:*
 - Two *Boolean expression* $\alpha(x_1, x_2, ..., x_n)$ and $\beta(x_1, x_2, ..., x_n)$ are *equivalent* if one can be obtained from the other by a finite number of applications of identities of a *Boolean algebra*.
- *Definition*:
 - Let $\alpha(x_1, x_2, ..., x_n)$ be a *Boolean expression* in *n* variables and $\langle B, *, +, ', 0, 1 \rangle$ be any *Boolean algebra* whose elements are denoted by $a_1, a_2, ..., a_n$. Let $\langle a_1, a_2, ..., a_n \rangle$ be an *n*-tuple of B^n . Then the *value* of the *Boolean expression* $\alpha(x_1, x_2, ..., x_n)$ for the *n*-tuple $\langle a_1, a_2, ..., a_n \rangle \in B^n$ is given by $\alpha(a_1, a_2, ..., a_n)$ which is obtained by replacing x_1 by a_1, x_2 by $a_2, ..., a_n$ by a_n in the $\alpha(x_1, x_2, ..., x_n)$.

Boolean function

- *Definition:*
 - Let $f:B^n \rightarrow B$ be a function. If a *Boolean expression* $g(x_1, x_2, ..., x_n)$ matches to a function *f*, then we say *g* is *associated with* function *f*.
- *Definition:*
 - Let <B, *, +, ', 0, 1> be a Boolean algebra. A function
 f:Bⁿ→B which is associated with a Boolean expression in n variables is called a Boolean function. A Boolean function defined on a switching algebra is called a switching function.

Example

• Which of f_1 , f_2 , and f_3 are Boolean functions ? ($f_i: B^2 \rightarrow B, i=1,2,3$)

<i>x</i> ₁ , <i>x</i> ₂	f_{I}	f_2	f_3
0, 0	0	1	0
0, α	α	β	β
0, β	β	α	β
0, 1	1	0	α
α, 0	α	β	0
α, α	0	β	1
α, β	1	0	α
α, 1	β	0	0
β, 0	β	β	α
β, α	1	0	0
β, β	0	α	β
β, 1	α	β	α
1, 0	1	0	β
1, α	β	α	α
1, β	α	β	β
1, 1	0	0	1

Exercise

1. Let $\langle B, \leq_1 \rangle$ be a *Boolean lattice* where $B=\{1,2,3,5,6,10,15,30\}$ and \leq_1 is defined to be " $x \leq_1 y$ if and only if x divides y".

By *Stone Representation Theorem*, there exists a power set *Boolean lattice*, $< \wp(A)$, $\leq_2 >$, which is isomorphic to $< B, \leq_1 >$.

Answer each of the following:

(a) Define set *A*.

(b) Show that $f:B \rightarrow \mathcal{O}(A)$ is a homomorphism from $\langle B, \leq_1 \rangle$ to $\langle \mathcal{O}(A), \leq_2 \rangle$.

Exercise (cont.)

2. Let <B, +, *, ', 0, 1> be a Boolean algebra. Show that the complement x' of each element x in B is unique (All identity properties used in your proof should be proven except those given by the definition of Boolean algebra).