Two-Dimensional Viewing
Viewing Pipeline

Modeling Coordinates ➔ World Coordinates ➔ Viewing and Projection Coordinates ➔ Normalized Coordinates ➔ Video Monitor

Plotter

Other Output

Device Coordinates
Two-Dimensional Viewing

- Two dimensional viewing transformation
 - From world coordinate scene description to device (screen) coordinates
Normalization and Viewport Transformation

- World coordinate clipping window
- Normalization square: usually $[-1,1] \times [-1,1]$
- Device coordinate viewport

A point (xw, yw) in a clipping window is mapped to a normalized coordinate position $(x_{\text{norm}}, y_{\text{norm}})$, then to a screen-coordinate position (xv, yv) in a viewport. Objects are clipped against the normalization square before the transformation to viewport coordinates.
Clipping

- Remove portion of line outside viewport or screen boundaries

- Two approaches:
 - Clip during scan conversion: per-pixel bounds check, or span endpoint tests.
 - Clip analytically, then scan-convert the modified primitive.
Two-Dimensional Clipping

- Point clipping – trivial
- Line clipping
 - Cohen-Sutherland
 - Cyrus-beck
 - Liang-Barsky
- Fill-area clipping
 - Sutherland-Hodgeman
 - Weiler-Atherton
- Curve clipping
- Text clipping
Line Clipping

- Basic calculations:
 - Is an endpoint inside or outside the clip rectangle?
 - Find the point of intersection, if any, between a line segment and an edge of the clip rectangle.

- Both endpoints inside ✅ trivial accept
- One inside ✅ find intersection and clip
- Both outside ✅ either clip or reject
Cohen-Sutherland Line-Clipping Algorithm

<table>
<thead>
<tr>
<th>Region code for each endpoint</th>
<th>Bit 4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>above</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>below</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>right</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

View port

- 1001
- 0001
- 0101
- 1000
- 0000
- 0100
- 1010
- 0010
- 0110
Cohen-Sutherland Line-Clipping Algorithm

- Trivially accepted
 - if (both region codes = 0000)
- Trivially rejected
 - if (AND of region codes ≠ 0000)
- Otherwise, divide line into two segments
 - test intersection edges in a fixed order.
 - (e.g., top-to-bottom, right-to-left)
Cohen-Sutherland Line-Clipping Algorithm

* Fixed order testing and clipping cause needless clipping (external intersection)
Cohen-Sutherland Line-Clipping Algorithm

- Midpoint Subdivision for locating intersections
 1. trivial accept/reject test
 2. midpoint subdivision:
 \[x_m = (x_1 + x_2)/2, \quad y_m = (y_1 + y_2)/2 \]
 (one addition and one shift)
 3. repeat step 1 with two halves of line
 \[\Rightarrow \text{good for hardware implementation} \]
Cohen-Sutherland
Line-Clipping Algorithm

- When this is good
 - If it can trivially reject most cases
 - Works well if a window is large w.r.t. to data
 - Works well if a window is small w.r.t. to data
 - i.e., it works well in extreme cases
 - Good for hardware implementation
Use a parametric line equation

\[P(t) = P_0 + t(P_1 - P_0), \quad 0 \leq t \leq 1 \]

Reduce the number of calculating intersections by simple comparisons of parameter t.

The page contains a section on **Parametric Line Clipping (Cyrus-beck Technique)**. It explains the use of a parametric line equation and how to reduce the number of calculating intersections by simple comparisons of the parameter t. The equation given is:

\[P(t) = P_0 + t(P_1 - P_0), \quad 0 \leq t \leq 1 \]
Parametric Line Clipping
(Cyrus-beck Technique)

Algorithm

- For each edge E_i of the clip region
- N_i: outward normal of E_i
Choose an arbitrary point P_{E_i} on edge E_i and consider three vectors $P(t) - P_{E_i}$

\Rightarrow

$N_i \cdot (P(t) - P_{E_i}) < 0 \iff$ a point in the side halfplane
$N_i \cdot (P(t) - P_{E_i}) = 0 \iff$ a point on the line containing the edge
$N_i \cdot (P(t) - P_{E_i}) > 0 \iff$ a point in the outside halfplane
Parametric Line Clipping (Cyrus-beck Technique)

- Solve for the value of t at the intersection of P_0P_1 with the edge:
 \[N_i \cdot [P(t) - P_{Ei}] = 0. \]
 \[P(t) = P_0 + t(P_1 - P_0) \]
 and let $D = (P_1 - P_0)$.

Then

\[t = \frac{N_i \cdot [P_0 - P_{Ei}]}{-N_i \cdot D} \]

$N_i \neq 0$,

$D \neq 0$ (that is $P_0 \neq P_1$),

$N_i \cdot D \neq 0$ (if not, no intersection)
Parametric Line Clipping (Cyrus-beck Technique)

- Given the four values of t for a line segment, determine which pair of t's are internal intersections.

 If $t \notin [0,1]$ then discard
 else choose a (PE, PL) pair that defines the clipped line.

- PE(potentially entering) intersection:

 if moving from P_0 to P_1 causes us to cross an edge to enter the edge's inside half plane;
Parametric Line Clipping (Cyrus-beck Technique)

- PL (potentially leaving) intersection:
 - if moving from P_0 to P_1 causes us to leave the edge's inside half plane.

 \[
 \begin{align*}
 \text{i.e., } N_i \overline{P_0P_1} &< 0 \implies \text{PE} \\
 N_i \overline{P_0P_1} &> 0 \implies \text{PL}
 \end{align*}
 \]

- Intersections can be categorized!
- Inside the clip rectangle (T_E, T_L)
 - T_E: select PE with largest t value ≥ 0
 - T_L: select PL with the smallest t value ≤ 1.
Parametric Line Clipping (Cyrus-beck Technique)

- This is an efficient algorithm when many line segments need to be clipped
- Can be extended easily to convex polygon windows
Liang-Barsky line clipping

- The ideas for clipping line of Liang-Barsky and Cyrus-Beck are the same. The only difference is Liang-Barsky algorithm has been optimized for an upright rectangular clip window.

- Finds the appropriate end points with more efficient computations.
Let PQ be the line which we want to study.

Parametric equation of the line segment

\[x = x_1 + (x_2 - x_1)t = x_1 + dx \times t \]
\[y = y_1 + (y_2 - y_1)t = y_1 + dy \times t \]

\[t = 0 \Rightarrow P(x_1, y_1) \]
\[t = 1 \Rightarrow Q(x_2, y_2) \]
Liang-Barsky Line Clipping

1. Set $t_{\text{min}} = 0$ and $t_{\text{max}} = 1$

2. Calculate the values of t_T, t_B, t_L, t_R,

- **Top edge:** $y = T$

 \[y_1 + t^*(y_2 - y_1) = T \]

 \[t_T = \frac{T - y_1}{y_2 - y_1} \]

- **Bottom edge:** $y = B$

 \[y_1 + t^*(y_2 - y_1) = B \]

 \[t_B = \frac{B - y_1}{y_2 - y_1} \]

- **Left edge:** $x = L$

 \[x_1 + t^*(x_2 - x_1) = L \]

 \[t_L = \frac{L - x_1}{x_2 - x_1} \]

- **Right edge:** $x = R$

 \[x_1 + t^*(x_2 - x_1) = R \]

 \[t_R = \frac{R - x_1}{x_2 - x_1} \]
Liang-Barsky Line Clipping

- If \(t < t_{\text{min}} \) or \(t > t_{\text{max}} \), ignore it and go to the next edge.

- Otherwise classify the \(t \) value as entering or exiting value (using the inner product to classify):
 - Let \(PQ \) be the line and \(N \) is normal vector
 - If \(N \cdot (Q - P) \leq 0 \), the parameter \(t \) is entering
 - If \(N \cdot (Q - P) > 0 \), the parameter \(t \) is exiting

- If \(t \) is entering value, set \(t_{\text{min}} = t \), if \(t \) is exiting value set \(t_{\text{max}} = t \)
3. If $t_{\text{min}} < t_{\text{max}}$ then draw a line from $(x_1 + dx \times t_{\text{min}}, y_1 + dy \times t_{\text{min}})$ to $(x_1 + dx \times t_{\text{max}}, y_1 + dy \times t_{\text{max}})$
Clipping

- Clipping rotated windows, circles
 - trivial acceptance/rejection test with respect to bounding rectangle of the window

- Line clipping using nonrectangular clip windows
 - extend Cyrus-Beck algorithm
Polygon clipping

- **Sutherland-Hodgeman Algorithm**
 - clip against 4 infinite clip edge in succession

![Diagram of polygon clipping steps](image)
Sutherland-Hodgeman Algorithm

- Accept a series of vertices (polygon) and outputs another series of vertices
- Four possible outputs

1. \(\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \)
 - Output: \(\mathbf{v}_1', \mathbf{v}_2 \)
2. \(\mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \)
 - Output: \(\mathbf{v}_2 \)
3. \(\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \)
 - Output: \(\mathbf{v}_1' \)
4. \(\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \)
 - Output: none
The Sutherland-Hodgeman Algorithm

- The algorithm correctly clips convex polygons, but may display extraneous lines for concave polygons.

- How clip?
How to correctly clip

[Way I] Split the concave polygon into two or more convex polygons and process each convex polygon separately.

[Way II] Modify the algorithm to check the final vertex list for multiple vertex points along any clip window boundary and correctly join pairs of vertices.

[Way III] Use a more general polygon clipper
Clipping concave polygons

- Split the concave polygon into two or more convex polygons and process each convex polygon separately.
 - vector method for splitting concave polygons
 ⇒ calculate edge-vector cross products in a counterclockwise order. If any z component turns out to be negative, the polygon is concave.
Weiler-Atherton Polygon Clipping

- For an outside-to-inside pair of vertices, follow the polygon boundary.
- For an inside-to-outside pair of vertices, follow the window boundary in a clockwise direction.
Weiler-Atherton Polygon Clipping

- Polygon clipping using nonrectangular polygon clip windows

![Diagram of polygon clipping](image)

Figure 6-30

Clipping a polygon fill area against a concave-polygon clipping window using the Weiler-Atherton algorithm.
Texture Clipping

1. all-or-none text clipping: Using boundary box for the entire text
2. all-or-none character clipping: Using boundary box for each individual
3. clip individual characters
 - vector: clip line segments
 - bitmap: clip individual pixels
What we have got!